SPECTRAL CURVE FITTING FOR AUTOMATIC HYPERSPECTRAL DATA ANALYSIS

Adrian Jon Brown

Abstract—I present a method for automatic curve fitting of hyperspectral reflectance spectra. The method is capable of automatically discovering and fitting symmetric absorption bands, can separate overlapping absorption bands in a stable manner, and has relatively low sensitivity to noise. A comparison with techniques already available in the literature is presented using simulated spectra. An application is demonstrated utilizing the Short Wave Infra Red (SWIR – 2.0-2.5 µm or 5000-4000cm⁻¹) region. I process a small hyperspectral scene to demonstrate the ability of the method to detect small shifts in absorption wavelength caused by varying white mica chemistry in a natural setting.

Index Terms—hyperspectral, curve-fitting

I. INTRODUCTION

Hyperspectral data analysis is often viewed as a statistical pattern recognition problem in a three dimensional hyperspace, often envisaged as a hyperspectral data cube. These analysis methods usually adopt a statistical approach to find image ‘end members’. Statistical methods range from simple hierarchical cluster analysis to complex methods such as minimum noise transforms and the ‘hourglass’ method [1-3].

In contrast to these statistical methods, a more traditional spectroscopic approach can be taken, where the analyst concentrates on recognizing absorption band shapes in each individual spectrum. This has the advantage of a direct connection between the reflectance spectrum of the target pixel and its chemical composition. When the hyperspectral dataset is viewed in this way, classifications are made according to underlying physical properties, rather than simply on their similarity to other pixels in the dataset.

Statistical methods have been demonstrated to have a place in the field of hyperspectral analysis; however I present here a tool which automates the processing of hyperspectral data in the manner of traditional spectral analysis.

Hyperspectral curve fitting methods immediately confront the challenge of modeling multiple overlapping absorption bands with relatively low spectral resolution. Typically, a hyperspectral spectrum has 100-250 measurement points (channels), with a spectral resolution per channel of 10-20nm and similar sampling intervals [4, 5]. Typical laboratory spectroscopic instruments have a spectral resolution of 1.25nm (2cm⁻¹) and similar sampling intervals [6]. The order of magnitude difference in spectral resolution means that hyperspectral spectra are not as definitive as laboratory spectra, and curve fitting techniques from the laboratory cannot simply be transferred to hyperspectral studies.

Reflectance spectra of solid surfaces can be modeled as a series of deep dips due to absorption bands, superimposed on a background continuum [7]. The central frequency at which absorption bands are detected is of most interest to spectroscopists, since these frequencies are indicative of the mineral types present [8].

Derivative spectroscopy can be used to approximate the locations of absorption bands using second and higher degree differential spectra [9, 10]. Fifth order derivatives have been demonstrated to give the most accurate results [11].

Curve fitting of spectra can estimate not only the central wavelength of the absorption band, but also their width and amplitude of the absorption band (Fig. 1). This is typically achieved using an iterative least squares method [12].

The absorption band dips can be modeled using Gaussian [13, 14], Lorentz [15], or mixed Gaussian-Lorentz (Voight) curves [16]. These curves are all symmetrical shapes that decay from a central peak (Fig. 1). Differing decay rates make each curve type better at replicating different physical processes [17].

Overlapping absorption bands are additive when measured in an absorption experiment. Reflectance spectra can be converted to apparent absorbance by taking the logarithm of the reflectance.

Manuscript received April 04, 2005.
Adrian Brown is with the Australian Centre for Astrobiology, Macquarie University, NSW 2109 AUSTRALIA; e-mail: abrown@els.mq.edu.au; website: http://aca.mq.edu.au/abrown.htm
apparent absorbance = \log_{10}(\text{reflectance}) \tag{1}

Natural logarithm is used in the Physics community; I have used base 10 logarithm since it is the standard in the planetary sciences community [13, 14].

Hyperspectral analysts typically report spectra in units of µm or ηm (wavelength), however plotting in energy space in cm\(^{-1}\) (wavenumbers) has greater physical basis and eliminates asymmetry due to display on a constant interval wavelength abscissa [18].

\text{frequency(cm}^{-1}) = \frac{10000}{\text{wavelength(µm)}} \tag{2}

In the remainder of this paper, the mathematics surrounding my curve fitting algorithm will be briefly discussed, followed by analysis of a noise free and noisy synthetic spectrum. Fits using Gaussian, Lorentzian and Voight curves will be compared. Finally, a real world application will be presented.

II. METHODOLOGY

If we consider a continuum removed reflectance spectrum [19], recorded at \(N\) discrete points, as a one dimensional vector \(R\), in wavelength space:

\[R(\lambda) = R(\lambda_1), R(\lambda_2) \ldots R(\lambda_N) \tag{3} \]

We may convert to apparent absorbance \(A\) by taking the base 10 logarithm, as described above, and multiply the spectrum by -1 in order to make the absorption features ‘positive’:

\[A(\lambda) = -\log_{10}(R(\lambda)) \tag{4} \]

we convert to energy space, where \(v\) is frequency, as described above:

\[A(v) = \frac{10000}{A(\lambda)} \tag{5} \]

If we consider the absorption bands to be Gaussian in shape, we may model \(A(v)\) using a series of absorption bands of the following general formula:

\[G(v) = \alpha \cdot e^{-\frac{(v-v_0)^2}{2\sigma^2}} \tag{6} \]

where \(\alpha\) is the amplitude (height) of the Gaussian, \(v_0\) is the central frequency, and \(\sigma\) is the full width at half maximum.

If we wish to model the absorption bands as Lorentzian in shape, we may use the formula:

\[L(v) = \alpha \cdot \left(\frac{\sigma}{(v-v_0)^2 + \sigma^2} \right) \tag{7} \]

A Lorentzian shape is often applicable for the absorption bands of gases [17], bought about by collision broadening of line spectra. A Gaussian shape is often superimposed by the effects of instrumental smearing (due to channel bandpass functions), and also by Doppler broadening [20]. Thus it is often desirable to model the absorption bands as a multiplicative or additive combination of Gaussian or Lorentzian shapes – this is then a Voight profile. An alternative approach, similar to a Voight profile, was suggested by [21] and is adopted here.

If we model the absorption bands using a function \(K\), of the type:

\[K(v) = \alpha \cdot \left(\frac{1}{\left(1 + \beta \psi^2(v)\right)^{\frac{1}{\beta}}} \right) \tag{8} \]

where

\[\psi(v) = \frac{(v-v_0)}{\sqrt{2}\sigma} \tag{9} \]

The parameter \(\beta\) is then a reflection of how ‘Gaussian-like’ or ‘Lorentzian-like’ our function is. I call it the Voight-likeness parameter. Clearly, if \(\beta = 1\), then \(K = L\) and we have a
Lorentzian shape. If $\beta = 0$, then our expression for K resembles a Gaussian shape.

This is shown if we use the Taylor’s theorem expansion for $\ln(1 + x)$,

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots$$

(10)

Dividing (8) by α, taking the natural logarithm and expanding, we get:

$$\ln \left(\frac{K}{\alpha} \right) = -\beta^2 \ln(1 + \beta^2 \psi^2)$$

$$= -\psi^2 + \frac{1}{2} \beta^2 \psi^4 - \frac{1}{3} \beta^4 \psi^6 + \frac{1}{4} \beta^6 \psi^8 - \ldots$$

(11)

Now, we let $\beta = 0$ and take the exponential of both sides to get

$$K = \alpha \cdot e^{-\psi^2}$$

(12)

And hence, $K = G$.

Using our approximation of an absorption band, $K(\nu_0, \alpha, \sigma, \beta)$, we may now approach the problem of fitting our curves to the absorption spectra A in the following way.

Hyperspectral datasets usually do not have enough measured points to carry out least squares analysis. The number of measured points must exceed the number of free parameters [12]. For example, with 4 free parameters per absorption band, only five bands can be modeled with 21 measured points. Thus it becomes necessary to interpolate to achieve a greater number of measurement points. I adopted an interpolation procedure similar to that described by Dyn et al. to model computer graphics curves. This interpolation approximates a cubic spline fit [22]. This interpolation procedure decreases the signal to noise (SNR) of the spectrum, so the number of interpolated points should be kept to a minimum. I found two interpolation runs sufficient to achieve good least squares fit, but this is clearly application dependent. Laboratory spectra could be analysed with no interpolation, for example.

For each absorption band, we must find four parameters, ν_0, α, σ and β. The central frequency of each peak, ν_0, is found by using an adaptive width sliding window Savitzky-Golay routine to model a sixth degree polynomial, and calculate the fifth, fourth and second derivatives of this polynomial [23]. A peak is located where the following conditions are fulfilled [11]:

$$A^{V}(\nu) = 0, A^{IV}(\nu) > 0 \text{ and } A^{III}(\nu) < 0$$

The superscript in Roman numerals indicates the order of the derivative of the absorption spectra.

The width of the sliding window is crucial to the accuracy of this peak finding method. If the bands are wide, the sliding window should be large to accurately fit the Savitzky-Golay polynomials. The opposite is the case for narrow bands. Huguenin’s method of choosing this width is proprietary. My method uses the width of second derivative positive and negative going peaks to approximate the width for each point in the spectrum.

Once the M central peaks are located, we can approximate an initial solution to the other three parameters (α, σ and β) for each band, K.

To estimate α, we use linear interpolation to estimate the value of $A(\nu)$ at ν_0 for each of the M peaks:

$$\alpha_m = A(\nu_{0m}) \quad \text{where } m = 1, 2, \ldots, M$$

To estimate the full width at half maximum, σ, we look either side of the peak value, for the closest point in the absorption spectrum $A(\nu)$ where the value has fallen to half of the value α. The distance either side is calculated, and the smallest distance is taken as the approximation to σ.

The value of β for each absorption band is initially set to a value of 0.5, to approximate an equally mixed Lorentzian-Gaussian curve [24].

Once these initial estimates of the parameters are obtained, we use a two stage iterative least squares method to refine them.

The iterative least squares method minimizes the following relationship:

$$\text{Min } ||A - K_{\text{total}}||$$

where $K_{\text{total}} = K_1 + K_2 + \ldots + K_M$

There are many such methods available [12, 25-27] - I adopted the Levenberg-Marquardt scheme [12]. After the initial estimate and first least squares refinement, the residual error, χ^2 (chi-squared) is calculated.

$$\chi^2 = \frac{1}{N} \sum_{n=1}^{N} \left[A(\nu_n) - K_{\text{total}}(\nu_n) \right]^2$$

(13)
If the residual is below a certain threshold, iteration is ended. Threshold values for \(\chi^2 \) are largely dependent on the dataset being examined, and I recommend experimentation with this value. Values of 0.01 have been quoted in the spectroscopy literature [24] and were found to give acceptable results, however I found values of \(1 \times 10^{-3} \) gave optimal results for the HyMap dataset, which is discussed below. If the \(\chi^2 \) value does not dip below the threshold after 30 iterations, the loop is exited.

In the first stage of iterative refinement, the \(v_0 \) and \(\beta \) values are pinned at their initial values, and \(\alpha \) and \(\sigma \) are allowed to iterate to a close solution. During the second stage, all parameters are free to vary.

This procedure utilizes the best of two techniques that are commonly used separately - the high order derivative techniques, and a staged iterative least squares curve fitting technique. The two stage enhancement affords stability, since the initial guesses for \(\alpha \) and \(\sigma \) for overlapping bands are often variable in accuracy. It also enhances the speed of the curve fitting overall since the starting estimates for the second stage usually require little adjustment.

The curve fitting algorithm was developed using IDL 6.0 from RSI (http://www.rsi.com).

III. Synthetic Spectra Modelling

A continuum removed reflectance spectrum was generated synthetically, and then analysed to see if the parameters could be retrieved using my curve fitting algorithm.

The parameters for the synthetic spectrum were chosen to be the same as those used by Huguenin to produce his results [11]. The curve parameters appear in Table I. Since Huguenin’s spectra were already absorption spectra in energy space, conversion from reflectance was not required. These values were chosen as three pairs of overlapping Gaussian shaped bands, very close to the limit of resolution from each other. Huguenin calculated the limit of resolution of two overlapping curves to be

\[
v_2 - v_1 > 0.56W
\]

(14)

where \(W \) is the widest band’s full width at half maximum, \(v_2 \) and \(v_1 \) are their respective central frequencies.

The sum of errors, \(\Sigma_{\text{error}} \), was calculated by summing the absolute difference between the final result for \(v_0 \) of each absorption band, and the known, synthetic \(v_0 \).

<table>
<thead>
<tr>
<th>Band</th>
<th>(W \text{AVE}G\text{LENGTH})</th>
<th>(\Sigma)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9500</td>
<td>2355</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11500</td>
<td>3040</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14500</td>
<td>1990</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16000</td>
<td>2150</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18500</td>
<td>2033</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20500</td>
<td>2150</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Table I

Parameters for Huguenin’s synthetic Gaussian absorption bands

Table II

Comparison of results for curve fitting algorithms

\[
\Sigma_{\text{error}} = \sum_{m=1}^{M} \| v_0 (\text{calculated}) - v_0 (\text{synthetic}) \| \quad (15)
\]

Huguenin did not specify how many measurement points he used, therefore I used a range of values for \(N \). Since parts of Huguenin’s technique are proprietary, I cannot be sure how closely I approximated his process. He quoted a value for \(\Sigma_{\text{error}} \) of 143 (his Table 3) for this scenario, which compares favourably to the results I achieved following his instructions (148-155, see Table II).

I tested my method with a standard initial value of \(\beta = 0.5 \), and also at \(\beta = 0.1 \), a value closer to the synthetic Gaussian shapes. I expected that starting close to the expected values for \(\beta \) would result in smaller final errors. Sampling resolutions were calculated assuming a measurement range of 15000 cm\(^{-1}\) (from 5000-20000 cm\(^{-1}\)). The results are shown at Table II.

The \(\Sigma_{\text{error}} \) figures for different numbers of measurement points illustrate several points.

- The addition of a least squares refinement stage has the capacity to significantly improve (up to 3 times in this scenario) upon the pure derivative technique.
- Although the synthetic curves were Gaussian, better peak position fits are achievable using an initial Voight-likeness parameter half way between Gaussian and Lorentzian behavior, compared to fits where the Voight likeness parameter was started off closer to a Gaussian shape. This preference for starting values of \(\beta = 0.5 \) was not reflected in final values of the \(\beta \) parameter – all of which settled below 0.5 and all (bar two) below 0.01 after iterative refinement.
- Little is gained by an order of magnitude increase in \(N \) from 100 to 1000, but a value of \(N = 88 \) is required to reach this
stable plateau, since below this value, an extra peak is found in this scenario of 6 closely spaced bands. For some values of N below 88 the correct number of bands is sometimes found, but in the wrong positions – generally giving Σ_{error} values around 700-1000.

Interpolation Sensitivity Testing

In order to test the effectiveness of my interpolation routines, I used Huguenin’s scenario with two interpolation runs, and compared the Σ_{error} to my previous results. These results appear in Table III.

For values of N less than those shown in Table III, extra peaks were ‘found’ by my curve fitting method. Although good fits were still achieved, an extra peak means the runs cannot be compared by using values for Σ_{error}. I regard finding an ‘extra’ peak as a failure in this analysis, although it should be noted that the results may still give useful information as long as the ‘found’ peaks were small and did not overlap much with real peaks.

The results of running the interpolation routines justifies their use – values for N as low as 33 still gave excellent reproductions of peak positions in this challenging scenario of six overlapping bands.

The trend for better results from mid range values for β is reversed as more interpolation is used. This suggests that the increasing interpolation is introducing further tendencies towards a Gaussian shape into the data.

It was found that increasing the number of interpolations past 2 did not give any better performance in peak finding for this scenario. The number of final points after interpolation (129 points) is similar to, but slightly larger than, the number of points required for good reproduction of peak positions without interpolation (88 points). This is intuitively reasonable, though currently I do not have an analytical understanding of the relationship between these two factors.

Since more interpolated points increases computation time without appearing to improve performance (although this has not been exhaustively tested under other scenarios), I use a standard of two interpolation runs for the remainder of this paper.

Noise Sensitivity Testing

To test the noise sensitivity of my method I generated another synthetic spectrum simulating the SWIR (4000-5000cm$^{-1}$) spectrum of chlorite obtained by a hyperspectral instrument. The parameters of the 4 bands are given in Table IV. Note they reflect very low absorption depths (~2%) typical in hyperspectral datasets.

The synthetic spectra were then modeled by the curve fitting algorithm with varying amounts of noise, and varying numbers of measurement points. RMS noise was calculated in reflectance space. Two interpolation runs were used for each scenario. The Σ_{error} was calculated by summing the difference between the calculated and synthetic central wavelengths, v_0.

The results appear at Table V. Because the central frequencies are smaller here than for the first example, the results are not directly comparable with Tables II and III.

The noise characteristics of my curve fitting algorithm may be understood in the following way. As explained earlier, the appearance of an extra band is regarded as a failure. When I add more measurement points, I add more noise to each point and more peaks are apparent to the curve-fitting algorithm.

<table>
<thead>
<tr>
<th>N</th>
<th>2x10$^{-5}$</th>
<th>10$^{-5}$</th>
<th>10$^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>9</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Values given are for Σ_{error}, calculated as described in the text. Two interpolation runs were carried out for each scenario. Note that since the peaks were of smaller frequency, the error values are not directly comparable with Tables II and III. A dash means that extra peaks were found so we cannot assess the error. N is the original number of measurement points before interpolation.
Flat response regions of a spectrum with added noise take on the appearance of small peaks. Since hyperspectral data often show peaks with just one measured point, Fourier smoothing and denoising techniques [11] cannot be applied without the risk of eliminating small absorption bands.

The appearance of spurious peaks does not frustrate spectral analysis — these can often be eliminated by careful amplitude thresholding, except where they appear in overlap with other bands. My analysis here highlights the critical nature of the noise characteristics of hyperspectral sensors.

Gaussian, Lorentz and Voight Comparison

In order to test the difference between Gaussian, Lorentzian and Voight curve fitting, I fitted a real chlorite SWIR spectrum (obtained from a HyMap dataset) with each type of curve. No noise was added, and two interpolation runs were carried out on an initial number of measurements \(N = 23 \). Table VI shows the \(\chi^2 \) values for each type of curve after my modeling technique.

These results shown in Table VI were typical of SWIR spectra from the HyMap dataset, which is discussed below. The Lorentzian-only curve fits performed the poorest, and the more flexible Voight curves provided the best overall fit. The Lorentzian shapes were probably negatively affected by the fact that I am analyzing continuum removed spectra — the slow fade out to the edges of Lorentzian shapes does not match the sharp edges of continuum removed spectra.

IV. APPLICATION TO HYMAP DATASET

I tested my curve fitting algorithm on a small subset of a HyMap dataset [5]. The dataset was collected in fine conditions in October 2002 over the Pilbara region of Western Australia [28]. The region is an Archean granite-greenstone terrain, displaying greenschist facies indicator minerals such as chlorite, hornblende, albite, and actinolite. Hydrothermal activity has emplaced muscovite-bearing veins and horizons throughout the terrain. The small scene I examined is believed to represent a volcanic edifice, rich in muscovite of varying tetrahedral Al/Si ratio, and surrounded by a chlorite-hornblende rich greenstone region [29]. Pixel resolution is approximately 5m on the ground.

I limited the investigation to the Short Wave Infrared (SWIR) region for the following reasons. The SWIR region is largely unobscured by atmospheric effects. Band saturation is uncommon in the SWIR region due to generally high reflectance [30]. The absorption bands in the SWIR region provide diagnostic information about the presence of hydrous phyllosilicates (such as micas, chlorites, serpentine, talc, etc.) which can be used to map hydrothermally altered zones [31]. Finally, curve fitting the SWIR is attractive due to relatively high signal to noise (SNR) achievable in this region with modern instruments (for example, HyMap SNR varies from 250 to 1000 in the SWIR [5]).

Before the analysis, atmospheric correction was carried out using ATREM [32]. The background continuum was removed using automatic continuum removal procedures [19] in order to leave only residual absorption band shapes suitable for modeling. For this study, straight line approximations were made for continuum removal.

Since I used the SWIR region of the HyMap dataset, there are \(N = 23 \) available channels, or measurement points, from 2.0932µm to 2.4768µm. I carried out two interpolation steps.

Using the curve fitting algorithm, maps were generated of the Al-OH combination (\(\delta + \delta + \delta + \delta \)) absorption band near 2.19µm. This absorption band is indicative of the presence of white mica, such as muscovite. A similar band is also attributable to kaolinite, but this always occurs with another band at 2.16µm, and in order to find just white mica, I eliminated any spectra displaying 2.16µm and 2.19µm bands.

The results of mapping the 2.19µm absorption band are shown in Fig. 2. Maps are generated of all four parameters, \(v_0, \alpha, \sigma \) and \(\beta \).

The map of central wavelengths (Fig. 2b) clearly shows short wavelength Al-OH in a swathe in the middle of the image. This is attributable to high temperature Tschermak substitution [33] in white mica within the volcanic vent. The map of amplitude (Fig. 2c) shows a small band of high amplitude Al-OH in the middle of the image, but not coincident with the regions of low wavelength. This is broadly attributable to the abundance of mica in these locations [6]. The FWHM map (Fig. 2d) shows the large preponderance of FWHM at around 150µm, although this is variable on the fringes of the white mica regions. The Voight-likeness parameter shows a fairly uniform band around \(\beta = 0.001 \).

TABLE VI COMPARISON OF GAUSSIAN, LORENTZIAN AND VOIGHT FITS

<table>
<thead>
<tr>
<th>Curve Type</th>
<th>(\chi^2)</th>
<th>(v_0)</th>
<th>(\alpha)</th>
<th>(\sigma)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAUSSIAN</td>
<td>0.018</td>
<td>0.026</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chi-squared values calculated for a real chlorite spectrum, fitted using exclusively Gaussian, Lorentzian or Voight type curves.
D. Potential over fitting of data

The essence of using an iterative fitting algorithm to model reflectance spectra is the choice of the degrees of freedom employed in the fit. A unique solution to the least squares fitting is not possible [34]. A larger number of absorption bands, and parameters (and hence degrees of freedom), will result in a better fit. Whether the addition of extra absorption bands is justified physically is always open to question. The method outlined in this work, employing a fifth derivative peak fitting algorithm to fix the number of peaks, avoids ‘overfitting’ of the data with extra absorption bands where they may not be justified.

E. Tradeoffs for using least squares minimization

It is clear that my two stage method can achieve greater accuracy than derivative techniques. This is mostly attributable to the least squares minimization process. This step is time consuming, and pure derivative methods still have a use as a quick approximation to absorption band central wavelengths.

F. Application to other areas of the spectrum

I have demonstrated application of the curve fitting method in a limited region of the EM spectrum, namely 2.0-2.5 µm. There is nothing inherently limiting the procedure to this region. The method is also applicable to laboratory or ground based field spectra, making comparison of results with airborne or satellite spectra convenient.

G. Future directions in hyperspectral sensors

The results of this analysis have highlighted the advantages of higher spectral sampling resolution for future hyperspectral sensors. More measurement points would obviate the need for interpolation runs. My analysis method would immediately benefit from a higher number of spectral channels, even if the channel bandpasses were not improved (although this, too, is of course desirable!). This analysis has also demonstrated the benefits of improvements in hyperspectral instrument SNR.

H. Expert system analysis

My method returns the number of absorption bands, \(M \), and for each band, the width \(\sigma \), amplitude \(\alpha \), central wavelength \(\nu_0 \) and Voight-likeness parameter \(\beta \). This data can be used as input to an expert system for automatic mineral analysis. Such a system has been described in [35].

VI. CONCLUSION

I have presented a technique for automatic curve fitting of hyperspectral reflectance datasets and provided an application. My method works by combining fifth derivative peak finding...
with a multiple stage iterative least squares refinement. The method provides a repeatable, stable modeling method, preserving the complete shape of the spectra. It employs a Voight-type absorption band curve model. It provides the capability to explore maps of band parameters width α, amplitude α, central wavelength λ_0 and Voight-likeness parameter β—all of which can be used as an input to an automatic mineral recognition expert system.

ACKNOWLEDGMENT

The generous provision of the HyMap dataset by HyVista and CSIRO is gratefully acknowledged. Prof. Malcolm Walter and Dr. Thomas Cudahy are thanked for their ongoing supervision of this project.

Adrian Jon Brown received the BE (Hons) from the University College, University of New South Wales at the Australian Defence Force Academy in 1994. He obtained a Masters in Computer Studies from the University of New England in 2000. He spent eleven years in the Royal Australian Navy as a Weapons Engineer, followed by a period of contract work for IBM. He is currently based at Macquarie University, Sydney, Australia. A website outlining his research is at http://aca.mq.edu.au/abrown.htm.

REFERENCES